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Due to the nonlinearity of Hertzian contacts, the speed of sound c in granular matter is expected to increase
with pressure as P1/6. A static layer of grains under gravity is thus stratified so that the bulk waves are refracted
toward the surface. The reflection at the surface being total, there is a discrete number of modes �both in the
sagittal plane and transverse to it� localized close to the free surface. The shape of these modes and the
corresponding dispersion relation are investigated in the framework of an elastic description taking into ac-
count the main features of granular matter: Nonlinearity between stress and strain and the existence of a yield
transition. We show in this context that the surface modes localized at the free surface exhibit a waveguide
effect related to the nonlinear Hertz contact. Recent results about the song of dunes are reinterpreted in light of
the theoretical results. The predicted propagation speed is compared with measurements performed in the field.
Taking into account the finite depth effects, we show that the booming instability threshold can be explained
quantitatively by a waveguide cutoff frequency below which no sound can propagate. Therefore, we propose
another look at a recent controversy, confirming that the song of dunes can well originate from a coupling
between avalanching grains and surface elastic waves once the specificity of surface waves �we baptized
Rayleigh-Hertz� is correctly taken into account.
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I. INTRODUCTION

From the physical point of view, surface waves in an elas-
tic material �called Rayleigh waves� are a combination of
compression and shear waves that are traveling at speeds
slightly smaller than bulk shear waves �1�. Nevertheless, in
the context of granular matter, the propagation of waves
close to the surface of a sand bed has risen the most contra-
dictory claims. If we exclude the recent suggestion �2� of a
compressibility originating from an interstitial fluid, it is well
accepted that sound in sand propagates through the grains
contact—the so-called elastic skeleton. A simple �mean-field�
argument shows that, under these conditions, bulk waves
cannot propagate parallel to the surface. This is due to the
increase of material stiffness �3� with depth which should
redirect the wave front toward the free surface �mirage ef-
fect�. Arguing that the free surface absorbs the wave �we will
see that this is actually not the case�, Liu and Nagel �4�
concluded that elasticlike modes cannot exist at all in granu-
lar media under gravity. Their experiments have shown a
nonharmonic response of the system, related to an extreme
sensitivity of the acoustic signal to minute local reorganiza-
tions. This was ascribed later to the speckle effect �5�, a
dominant feature for probe sizes on the order of one grain. In
the context of physics, the very existence of such waves and
their ability to propagate over large distances has remained
problematic. However, the propagation of sound at the sur-
face of sand was evidenced and characterized in two other
contexts: the localization of preys by scorpions and the spon-
taneous emission of sound by sand avalanches �the so-called
song of dunes�. As it is an important justification for the
present work, we would like to recall the state of the art and
the open questions about these two issues.

Prey detection of scorpions. To our knowledge, the first
experiments on wave propagations over sandy free surfaces
were conducted in a biological context. Some desert animals

like scorpions are blind—they mostly live at night—and use
sand-born surface sound waves up to a distance of half a
meter in order to localize their prey �6�. On each of their legs
they possess slit sensilla receptors and associated neural con-
nections, such as to detect small phase lags and orient their
killing jump very efficiently. Biologists like Ph. Brownell
and his collaborators �6� have identified surface propagation
of sound and measured a rather low speed �c�50 m/s in the
100–500 Hz range� compatible with the animal biological
capacities for signal processing �7�. From the physical point
of view, puzzling questions remain to understand the true
nature of these waves and it is the aim of the article to help
clarify the issue. Nevertheless, an intriguing question re-
mains. It has been shown recently, in model systems, that
localized modes of vibration with a complex spatial structure
do exist as a signature of the disordered nature of the mate-
rial �8,9�. In the limit of vanishing confining pressure �at a
surface, for example�, their spatial extention could in prin-
ciple be very large. From a biological point of view, knowing
that the scorpion legs are only a few grains in size, it would
be crucial to understand to what extent the ability to detect
precisely the location of a sound emission locus �a long
wavelength traveling wave� could be influenced by other
complex spatial modes. This precise issue is out of the scope
of the present article but remains in our mind a vivid back-
ground problem.

The song of dunes. Many sand dunes spontaneously make
loud booming noises when they avalanche �10�. Records of
the sound are centuries old �11–15�, but the cause has re-
mained a mystery until recently �16–18�. Surface elastic
waves were recently found to be fundamental in the song of
dunes phenomenon �19�. By an extensive characterization of
the phenomenon in the field, one of us �19� has shown that
�i� the sound emitted in the air is not due directly to the
avalanche but to the coherent vibration of the free surface
�surface elastic modes�; �ii� these surface waves exist both
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inside and outside the avalanche and are indeed localized at
few centimeters below the surface; �iii� the emission fre-
quency f is controlled by the velocity gradient inside the
avalanche shear layer, which is also the collision rate of the
rolling grains, and not by any resonant condition; �iv� for a
gravity induced flow, f is roughly equal to �0.4�g /d, where
g is the gravity and d the grain size; �v� the upper bound of
the sound level ��105 dB� corresponds to the amplitude of
vibration for which the normal acceleration of the free sur-
face just balances gravity, i.e., whenever the grains start tak-
ing off the surface; �vi� the elastic surface waves tend to
synchronize the grains collisions; �vii� the elastic surface
waves propagate at a speed of the same order of magnitude
��40 m/s at 100 Hz� at the surface of a static sand bed and
of a flowing layer. �See Fig. 1.�

This series of facts point toward a precise mechanism
involving the interaction between the collisions inside the
avalanche and the elastic modes �19�. During an avalanche,
there are two distinct modes of deformation. On one hand,
the grains move one with respect to the others �shearing�; on
the other hand, they remain in contact with their neighbors so
that pressure waves can propagate through the �sheared� elas-
tic skeleton. During a collision between two grains, part of
the kinetic energy is dissipated but part is transferred through
the grains deformation into elastic waves—both surface
waves and localized modes. Of course, in a silent avalanche,
the grain motion is not correlated at long distance so that the

contributions of different collisions to the coherent modes
interfere destructively. The key point of the mechanism pro-
posed in �19� is the demonstration on a simple model that
coherent elastic waves tend to synchronize the collisions of
the grains. This suggests that the song of dunes originates
from a wave particle mode locking. The reference state in
which the collisions are randomly distributed becomes un-
stable toward a mode in which a propagative coherent elastic
mode is excited and, simultaneously, a fraction of the mov-
ing grains gets synchronized. This mode increases in ampli-
tude since the wave synchronizes the collisions which in turn
excite the wave constructively. The only condition of insta-
bility is that sufficient energy may be transferred from trans-
lation to vibration, and of course that elastic surface waves
can propagate. We shall return later on to this last condition.

Independent measurements of “the” sound propagation
speed at the surface of Californian booming dunes were per-
formed by Hunt et al. �20� with a hammer hitting a metallic
plate, giving c�210 m/s. On this basis, they supported the
�old� idea according to which booming avalanches simply
come from a resonance inside the dune. Recently, booming
sand flows were reproduced in the lab by Douady et al. �21�
by inducing a small scale avalanche of size H with a blade
moving at a controlled velocity V. The emission frequency f
increases with V /H and gives back the value measured in the
field for asymptotically small velocities or large avalanches
�see Fig. 9�b� of the present paper reproducing experimental
data�. This shows that there is no need to have a large dune
�a large resonant cavity� below the avalanche for the phe-
nomenon to exist. The second original point of the paper is
the evidence of a threshold for the booming instability, which
depends in a complex manner on V and on H �see Fig. 9�a��.
On this basis, Douady et al. challenged the existence and the
role of surface elastic modes �19� and gave a �slightly� dif-
ferent explanation: “Coupling �shear?� waves” would propa-
gate at c�0.94 m/s across the avalanche and synchronize
the flow. Note that is indeed very low sound speed, which
has never been observed directly in the context of granular
matter. In particular, depending on different authors, the
propagation speed would be between 1 m/s �estimated from
an instability threshold �21�� and 210 m/s �directly measured
by impact �20��, with an intermediate value �40 m/s �di-
rectly measured at 100 Hz with a sinusoidal source �19��. In
summary, if it is now clear that acoustic waves are involved
in the song of dunes, their exact nature is still controversial.

Importantly, it is now beyond any doubt that no resonance
at the scale of a dune is necessary for the phenomenon to
occur: The same flow on different resonant cavities �e.g.,
different dune sizes� produce the same frequency and differ-
ent flows on the same resonant cavity �e.g., the surface of the
same dune� produce different frequencies. The controversy
on this subject mainly results from the way avalanches were
produced on the dune slip faces. Most people spontaneously
generate inhomogeneous intermittent avalanches by beating
the legs like scissors �20�, which results in important varia-
tions in emission frequency. However, a uniform pushing is
needed to obtain homogeneous avalanches, controlled by
gravity �19,21�.

A direct motivation of the present paper is to provide a
theoretical framework for wave propagation at the surface of

FIG. 1. Schematic of a booming avalanche flowing along the
slip face of a dune. The grains are submitted to both pressurelike
elastic waves and to shear localized at the interface between the
flowing layer and the static sand bed. The emission in the air is due
to the vibration of the free surface, which acts as a loudspeaker. In
the inset, we display a sonogram from a probe downhill the ava-
lanche triggering place. This demonstrates that the emission fre-
quency is well defined when the avalanche is homogeneous. It also
shows that the free surface vibrates both in the avalanche �t�0�
and outside, in the static zone �t�0�. No discontinuity �in fre-
quency and amplitude� is observed at t=0, when the avalanche front
reaches the position at which the sound is recorded �very close to
the soil�. The instability results from an interaction between the
shear deformations and the elastic waves: The collisions excite the
elastic waves that in turn tend to synchronize them. The stability or
instability of this locking mechanism is a matter of probability for
the granular collisions to act in phase with the acoustic wave.
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a sand bed under gravity. Do the surface modes exist? What
is their dispersion relation? What is the expected propagation
speed? Can the booming instability threshold �21� be concili-
ated with the directly observed surface elastic waves �19�?
What is the role, if any, of the resonant cavity below the
avalanche?

Sound in sand under strong compression. Granular matter,
as a collection of stiff grains under moderate confining pres-
sure, bears intergranular contact surfaces of a scale much
smaller than a typical grain size. In fact, the surfaces and the
orientations of contacts are likely to be modified either re-
versibly or irreversibly under the variation of intergranular
forces. This feature is at the origin of many inherent difficul-
ties when one wishes to determine the macroscopic constitu-
tive properties. Moreover, the packing topology which deter-
mines the contact geometry is usually of a strongly
disordered nature �22� and average quantities like deforma-
tion fields are quite subtle to define �23�. Thus, already at the
most simple level of description, involving local nonlinear
elastic relations �the classical Hertz force problem �3��, a
mean-field approach which identifies the local granular dis-
placements with macroscopic deformations, is failing quan-
titatively �24–29�. In the context of physics, tests were
mostly made using sound wave bulk propagation
�5,24,28,29� under rather large confining pressures P and re-
sults show a propagation velocity c� P1/4 instead of the stan-
dard mean-field prediction c� P1/6. Actually, Makse et al.
�29� have shown clearly using numerical simulations that if
one takes into account the effective increase of the number of
contacts with pressure, the agreement is bettered �especially
for compression waves�. Nevertheless, an essential discrep-
ancy still lies in the assessment of the shearing stiffness
merging from local tangential contact forces �29�. Note also
that, from an experimental point of view, the exact origin of
the discrepancy is not totally clear �30�. Other features such
as angular shape contacts �31� or the existence of a soft layer
surrounding the grains �32� can modify the propagation ve-
locities in directions observed experimentally.

In the limit of vanishing confining pressure very few re-
sults on sound wave propagation exist either experimentally
�4,6,19� or theoretically �33�. In this paper, we address the
issue of surface wave propagation in the theoretical frame-
work of continuous nonlinear elasticity. The model we use
was recently introduced by Jiang and Liu �34� to describe
granular constitutive properties. In the first part of this paper,
we give a short state of the art concerning the elastic descrip-
tion of granular media in the static phase and present the
phenomenology introduced by Jiang and Liu. In the second
part, we show the existence of surface waves in a semi-
infinite slab of grains under gravity. We derive the shape of
the modes and their dispersion relation. In the third part, we
turn to the song of dunes problem and compare the theoret-
ical dispersion relation to experimental measurements made
in the field. We also show that the booming instability thresh-
old can be reproduced quantitatively if finite depth effects
�Appendices B and C� are taken into account and simply
comes from a waveguide cutoff.

II. THE JIANG-LIU MODEL

A. Strain-stress relation

We introduce the displacement field �U and the stress
tensor �ij. With our conventions, the dynamical equation
reads

�Ü = − ��̄ + �g . �1�

To relate the stress tensor �ij to the strain tensor uij = �1/2�
���Ui /�xj +�Uj /�xi�, Jiang and Liu have recently proposed
a phenomenological formulation based on a simple energetic
formulation:

Fel = E�1/2�2

5
Bull�

2 + Aus
2� , �2�

where E is the material Young’s modulus and A and B are
two dimensionless numbers. The volumic compression is

� = − Tr�uij� , �3�

uij
0 =uij + �� /3��ij is the traceless strain tensor, and

us
2 = uij

0 uij
0

is its modulus squared. The derivation of the stress tensor
yields

�ij = E���B��ij − 2Auij
0 +

Aus
2�ij

2�
� . �4�

Interestingly, the last term of this equation, Aus
2�ij /2�, does

not exist in standard Boussinesq nonlinear elasticity �35�.
This discrepancy comes from the fact that this last theory is
not derived from an elastic potential, contrary to the Jiang-
Liu model. This fundamental question is also a strong moti-
vation to put under clear experimental test the propagation of
elastic waves in granular assemblies. It is important to note
that this elegant and compact formulation of elastic energy is
able to reproduce many qualitative features observed experi-
mentally, such as the existence of a Coulomb-like failure or
stress-induced anisotropy. Efforts have been made by the au-
thors to compare quantitatively their model to the output of
several experimental measurements, such as systematic tri-
axial tests, the response to a local load, and static equilibrium
in a column. The agreement was noticeable, especially in
view of the minimal amount of free parameters in the model.
The possibility to follow the elastic behavior up to the limit
of failure is also a promising feature of the model in the
context of slope stability monitored by sound waves. This
feature is quite original if one compares to the standard
Boussinesq nonlinear elasticity framework �35�. Of course,
issues like irreversible deformation fields �plasticity� are still
questionable in the framework of this model; nevertheless, it
provides a well defined starting point for a complete analysis
and modeling of elastic vibrations. Furthermore, this ap-
proach can be generalized easily with a power law not rep-
resenting necessarily the Hertzian interaction. Thus one
could, in principle, take into account the existence of other
types of nonlinear contact force laws �31,32�. In the present
paper, we will limit ourselves to Hertzian interactions and we
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will derive sound propagation around the simplest possible
reference state.

B. Mean field determination of the compression modulus

Since Mindlin in the 1950s, several works, focusing on
sound wave bulk propagation in granular materials, have de-
rived from local Hertzian interactions, the effective elastic
moduli �24–27�; for a recent and clear review, see Makse et
al. �29� and references therein. We just recall here the mean-
field results for a packing of spheres of compacity 	 and an
average coordination number Z. First let us write the inter-
particular forces between two spheres of radii R1 and R2 and
half overlap 
=1/2�R1+R2− 	x�1−x�2	�, R=2R1R2 / �R1+R2� �if
R1=R2, R is the sphere radius�. The normal force is

Fn =
8

3

�g

1 − �g
R� 


R
�3/2

,

where �g is the shear modulus and �g the Poisson ratio. If
half the tangential separation between the sphere center is
s, the tangential force is then

Ft =
8�g

2 − �g
R� 


R
�1/2

s .

Finally, one may obtain, from mean-field granular displace-
ment, the elastic constant values, i.e., the bulk modulus

KMF =
1

3�

�g

�1 − �g�
�	z�2/3�3��1 − �g�

2�g
P�1/3

and the shear modulus

�MF = � 1

1 − �g
+ �

3

2 − �g
� �g

5�
�	z�2/3�3��1 − �g�

2�g
P�1/3

with two limits: �i� No sliding friction between the grains
�take �=0� or �ii� infinite friction between the grains �take
�=1�. For the macroscopic Jiang-Liu model in the isotropic
case, the strain and stress tensors read

uij = −
�0

3
�ij, �ij = P�ij, P = EB�0

3/2. �5�

For an isotropic compression, we have P=EB�0
3/2=KMF�0;

therefore

KMF 
 EB� P

EB�1/3

.

Consequently,

B =
	z

23/23��1 − �g
2�

. �6�

C. Determination of the ratio B /A

1. Mean field

Now we consider the Jiang-Liu model with x-z shear un-
der isotropic compression P:

�xz = − 2AE�0
1/2 = − 2�MFuxz

and P=EB�0
3/2, thus �MF
EA�P /EB�1/3. Therefore,

A =
	z

23/25��1 + �g�� 1

1 − �g
+

3�

2 − �g
� . �7�

If one takes 	�0.6 and Z�6. The bulk shear modulus for
silica oxide is �g�30 GPa and the Poisson ratio is �g�0.2.
This gives EB�10 GPa and EA�6.5 GPa for �=0 and
EA�9 GPa for �=1. These values will be of importance
when the surface sound wave velocities, found experimen-
tally for sand, will be discussed at the end of the paper. From
the above expressions, we get

B
A =

5

3�1 +
3��1 − �g�

2 − �g
� . �8�

For �=0, we get B /A=5/3. For �=1 and �g=0.2, we get
B /A=5/7.

2. Energetic argument

According to Jiang and Liu, we have a material instability
corresponding to a Coulomb yield, for a criterion based on
the free energy landscape convexity �a thermodynamic sta-
bility criterion� �34�:

tan � =�2A
B . �9�

Thus B /A=2/ tan2 �c�6. We then notice a large discrepancy
for the B /A ratio between the mean-field solution and the
empirical result obtained from direct measurement of the
sand-pile slope.

III. SAGITTAL WAVES UNDER GRAVITY

A. Equilibrium of the system

Now we examine the case of a semi-infinite volume filled
with granular matter and submitted to a vertical gravity field
�Fig. 2�. As mentioned in the Introduction, due to the inho-
mogeneous pressure field P��gz, the system presents a
stratification in the propagation speed c�z1/6 which should
also lead to a refraction toward the free surface. A simple
qualitative picture, recently proposed by Gussev �33�, estab-
lishes a relation between the wave propagation confined

FIG. 2. Theoretical setup. We consider elastic waves propagat-
ing along the x direction in a cell filled with granular matter. Grav-
ity is along the z axis. The y axis is the direction transverse to
propagation.
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within an effective waveguide and vertical resonances due to
multiple reflections of the curved propagation rays at the
upper free surface. This vision is somehow opposed to the
early claim of Liu and Nagel �4� that the free surface would
absorb the wave: The reflection is actually total.

The first step is to compute the reference state of the
system. We first solve the equilibrium problem, starting from
a strain tensor of the form

uij = �0 0 0

0 0 0

0 0 − �0
�, uij

0 = �0�
1

3
0 0

0
1

3
0

0 0 −
2

3

� .

The modulus follows as us
2= �2/3��0

2. Using the constitutive
relation, we obtain the stress tensor

�ij = E�0
3/2��B −

A
3
� 0 0

0 �B −
A
3
� 0

0 0 �B +
5A
3
�� .

The pressure is defined from the trace of this stress tensor:
P=E�0

3/2�B+A /3�. The expression for the vertical stress is
replaced by

�zz = �B +
5A
3
�E�0

3/2 = �gz

so that the volumic compression reads

�0 = −
dW0

dz
= � �gz

E�B +
5A
3
��

2/3

, �10�

where W0 is the vertical displacement field. The second
boundary condition is taken at z→�. In practice, we impose
a null displacement W0�H�=0 at the lower edge of a box z
=H and at the end let H tend to infinity �see Appendixes B
and C for details about finite depth effects�.

B. Linearized equations

Now we investigate the existence of propagative modes
polarized in the sagittal plane �x ,z�. We consider the defor-
mation of the free surface to be of the form ��x , t�
=�0ei�kx−�t�. The displacement field is defined through two
dimensionless functions U and W of the dimensionless vari-
able �=kz:

Ũ = �iU���
0

W���
�� .

The disturbance to the strain tensor reads

uij
˜ = k�� − U 0

i�U� + W�
2

0 0 0

i�U� + W�
2

0 W�
�

and its traceless counterpart is

uij
˜0 = k��

−
2U

3
−

W�

3
0

i�U� + W�
2

0
U

3
−

W�

3
0

i�U� + W�
2

0
2W�

3
+

U

3

� .

The disturbance to the volumic compression is �̃=k��U
−W��. That of the modulus us

2 reads

us̃
2 = 2uij

0 uij
0̃ = −

2�0

3
�U + 2W��k� .

The disturbance to the stress tensor may be formally ex-
pressed as

�̃ij = ��0E3

2
B�̃�ij − A�

1

3
0 0

0
1

3
0

0 0 −
2

3

� �̃ − 2Auij
˜0

−
A
6

�̃�ij +
A

2�0
us̃

2�ij�
which gives, after simplification, the following expressions
for its components:

�xx
˜ = E��0��A

2
+

3B
2
�U + �A

2
−

3B
2
�W��k� ,

�zz
˜ = − E��0��A

2
−

3B
2
�U + �5A

2
+

3B
2
�W��k� ,

�xz
˜ = �zx

˜ = − iAE��0�U� + W�k� .

For the sake of simplicity, we rescale the stress tensor, intro-
ducing the functions Sxz�kz�, Szz�kz�, and Sxx�kz�:
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�xz
˜ = i��2k2/3�Sxz�kz� ,

�zz
˜ = ��2k2/3�Szz�kz� ,

�xx
˜ = ��2k2/3�Sxx�kz� , �11�

where � is a material parameter of dimension �T−1L5/6� de-
fined by

� = A1/2�B + 5A/3�−1/6�E

�
�1/3

g1/6. �12�

The previous expressions then simplify into

Sxx��� = �1/3��1

2
+

3B
2A�U��� + �1

2
−

3B
2A�W����� ,

Szz��� = − �1/3��1

2
−

3B
2A�U��� + �5

2
+

3B
2A�W����� ,

Sxz��� = − �1/3�U���� + W���� . �13�

From the equations of motion, we get the dispersion rela-
tionship

� = ��k5/6. �14�

The dimensionless set of equations

�2U = Sxx + Sxz� , �15�

�2W = − Sxz + Szz� �16�

determines the shape of the modes and, through the bound-
ary conditions, fixes the dimensionless frequency �. We can
already conclude that surface modes do exist and are
�weakly� dispersive. Indeed, the group velocity increases as
k1/6 or equivalently as �1/5.

C. Resolution

Now, in order to obtain the prefactor � of the dispersion
relation �14� as well as the shape of the modes, we solve the
boundary condition problem, rewriting the above equations
as a set of 4—linear—ordinary differential equations:

U� = − W − �−1/3Sxz,

W� = −
1

5A + 3B
��A − 3B�U + 2A�−1/3Szz� ,

Sxz� = �2U − Sxx,

Szz� = �2W + Sxz,

Sxx =
1

5A + 3B
��3B − A�Szz + 2�A + 6B��1/3U� .

The boundary conditions are vanishing stresses Sxz�0�=0
and Szz�0�=0 at the surface and a vanishing strain at infinity:

U��→��=0 and W��→��=0. This selects unique
asymptotic behaviors. Note in particular that Sxz and Szz van-
ish linearly with � so that �−1/3Sxz and �−1/3Szz are well-
behaved terms. The same condition is obtained if one starts
with a finite load at the surface �so that the elastic moduli do
not vanish anymore� and lets this extra load tend to zero.

The amplitude is normalized using W�0�=1. The solution
�U ,W ,Sxz ,Szz���� is obtained by superposition of the solu-
tions obtained, starting from the initial conditions �0, 1, 0, 0�
and �1, 0, 0, 0�. In practice, we tune the value of � to get the
cancellation of both U and W at a finite depth H, and then
take the limit H→� �see Appendix C for the discussion of
finite depth H effects�.

Hence the sagittal surface waves present a discrete num-
ber of modes guided by the refractive index grading induced
by gravity. The shape of the modes excited at a given pulsa-
tion � is displayed on Fig. 3. They are elliptically polarized,
the principal axis being along x and z. The modes are essen-
tially localized in surface, on a depth of order �n+1� times
the wavelength �=2� /k. The dispersion relationship is dis-
played on Fig. 4 for a particular value of �. One observes
that the different branches are pretty close to each other. This

FIG. 3. Shape of the sagittal modes: Profiles of the horizontal
displacement U��� �solid line� and vertical displacement W���
�dashed line�. �=kz is the reduced depth.

FIG. 4. Dispersion relation of sagittal waves for �
=50 s−1 m5/6. Note that the dispersion relation of transverse waves
�not shown� almost collapses on the same curves.
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is due to the very slow increase of the dimensionless fre-
quency � with the mode number n �Fig. 5�. Although the
values of � are not regularly spaced, they follow a general
trend: ��n1/6.

IV. TRANSVERSE SURFACE WAVES UNDER GRAVITY

A. Linearized equations

Now we investigate the existence of propagative trans-
verse modes localized close to the surface �36�. We consider
a transverse displacement ��x , t�=�0ei�kx−�t� at the surface of
the granular bed. We define the dimensionless function V of
the dimensionless variable �=kz:

Ũ = � 0

V���
0

�� . �17�

Again, we linearize the strain tensor

uij
˜ = k��

0
iV

2
0

iV

2
0

V�

2

0
V�

2
0
�

and find no variation of the volumic compression �̃=0. The

trace of uij
˜ is null so that uij

0̃=uij
˜, and then us

2̃=2uijuij
˜van-

ishes. Finally, we obtain

�̃ij = − 2AE��0 uij
˜ = − AE��0k�� 0 iV 0

iV 0 V�

0 V� 0
� .

From the equation of motion along y, we get a similar
dispersion relation as for sagittal modes:

� = ��k5/6. �18�

The shape of the mode—and the � values—are now given
by the equation

�2V = �1/3V − ��1/3V�� . �19�

B. Resolution

To solve Eq. �19�, we decompose the problem in two
equations:

V� = �−1/3S ,

S� = ��1/3 − �2�V ,

with boundary conditions coming from the zero stress con-
dition at the free surface �S�0�=0� and the definition of �
�V�0�=1�. At infinity, we impose a vanishing displacement:
V��→��=0. As for sagittal waves, the system presents a
discrete number of modes that may be associated with the
gravity induced stratification. The shape of the modes is dis-
played on Fig. 6. The motion is pure shear and the modes are
linearly polarized in the direction transverse to the sagittal
plane. The amplitude of the mode n decays exponentially
after typically n oscillations. Figure 5 shows the variation of
the dimensionless frequency � with n. Numerically obtained
data are well fitted by �= ��0

6+��n�1/6, with �0�1.07 and
���5.35.

V. THE SONG OF DUNES: SURFACE WAVES INDUCED
BY AN AVALANCHE

A. Dispersion relation in a booming sand

In the Introduction, we summarized the state of the art
concerning the song of dunes. Now that we have clarified
theoretically the nature of surface elastic waves, it is inter-
esting to investigate whether or not field �and other� mea-
surements can be matched using this concept. In a previous
article, Andreotti �19� has measured the dispersion relation at

FIG. 5. Dimensionless frequency �=�k−5/6 /� as a function of
the mode number n for the longitudinal ��� and the transverse ���
modes. The best fit �solid line� of transverse modes data by �
= ��0+��n�1/6 gives �0�1.3906 and ���5.4145.

FIG. 6. Shape of the transverse modes V��� for the same
frequency.
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the surface of the avalanche slip face of a singing dune �top
schematic of Fig. 7�. Now we briefly recall the measurement
methodology but extensive details can be found in this last
reference. Sinusoidal signals, recorded on a tape, were
played through an amplified loudspeaker that was kept fixed.
As the mechanical transmission of the sound generator with
the sand bed is nonlinear, the signal is distorted and presents
harmonics. This imperfection was used to derive several
points of the dispersion relation from each recording. From
the phase between the Fourier components of the signals of
two accelerometers aligned with the loudspeaker, the wave-
lengths � associated with each frequency f were obtained. In
order to unwrap the phase, the amplitude of the signals was
slightly modulated at low frequency. The collection of all
measurements that establishes the dispersion relation is pre-
sented in Fig. 7.

Once replaced in the context of surface elastic waves, the
wide scatter of experimental data points is not completely
surprising. Indeed, a localized excitation at the surface, such
as the one used for these measurements, cannot select a
single mode. It is even probable that the decomposition of
the source into sagittal and transverse modes may vary from
one realization to the other. Thus the measured phase just
gives an effective wavelength. To reanalyze the data, we con-
sidered that the lower frequency for a given wavelength was
a pure mode n=0. The best fit of this lower bound by the
relation �=�0�k5/6 yields a value ��50 s−1 m5/6. It would
correspond at the booming emission frequency f =100 Hz to
a phase velocity of 32 m/s and to a group velocity of 27 m/s
for the mode n=0. But, of course, higher order modes can
propagate much faster than this lower bound.

Clearly, Fig. 7 does not constitute a proof that the propa-
gation of surface waves is well captured by the model and
more controlled experiments are needed to confirm our
analysis. Nevertheless, as can be evidenced on the figure,
the agreement for the first three modes is not bad and it
is interesting now to compare the value found for � to the
one predicted by a mean-field estimate. For EB=10 GPa and
the ratio B /A=6 derived from the sand-pile slope, we obtain
��106 s−1 m5/6. It means that the actual surface wave
speeds measured in these conditions are still slow by a factor
of 2 when evaluated from the simple arguments presented
above. While the mean-field evaluation of the compression
modulus EB is in general good, it usually overestimates the
shear modulus �29�. Here, it suggests that the ratio B /A
is in fact around 29 instead of 6 as argued by Liu
et al. �34� from a Coulomb yield argument based on a sand
pile slope.

B. Finite size effect

In a semi-infinite medium, we have seen that the surface
elastic waves always exist. If we now consider that the dis-
placement should vanish at a finite depth H, a waveguide
cutoff frequency appears, below which no sound can propa-
gate �see the Appendixes�. It corresponds to the limit of van-
ishing kH and thus to a nonpropagative mode. In Appendices
B and C, the shape of these resonant modes has been derived
analytically as well as a good approximation for the reso-

nance frequencies. We will limit ourselves to discussion of
the results, presented in Fig. 8, in the context of booming
avalanches, where they turn out to be useful.

Also they apparently resemble sinusoidal modes, there
is a strong difference with usual modes in a nondispersive
homogeneous medium: The resonant frequency f is propor-
tional to �H−5/6. Thus the nondispersive relation invoked in
�20,21� does not apply since there is not a single sound ve-
locity but a discrete number of dispersive modes.

Also, surprisingly, it is a well known fact that the desert
dunes are filled with this water trapped by capillarity. More-
over, due to the successive avalanches, there is a layering of
wet and dry zones close to the surface finishing at the surface
with a dry layer �see schematic on Fig. 1�. In the singing
megabarchan located close to Sidi-Aghfinir �Morocco�, we

FIG. 7. �a� Dispersion relation of surface elastic waves on the
slip face of a booming dune. A sinusoidal signal is emitted by a
loudspeaker, aligned with transducers distant by 5 cm ���, 15 cm
���, 25 cm ���, and 42 cm ���. The solid lines correspond to the
sagittal Rayleigh-Hertz modes �see Eq. �14� and the Appendix C�
with a material stiffness ��50 s−1 m5/6 adjusted to match the low-
est n=0 propagating mode. The cutoff frequency is determined in-
dependently ��b�–�d��. �b� Response of the booming dune to a nor-
mal tap, at the same place as �a�. The signal is similar when
recorded in the sand bed with an accelerometer or in the air with a
microphone. The tail following the tap contains a well defined fre-
quency, interpreted here as the first compression resonant mode due
to the presence of wet sand at a depth around 50 cm below the
surface. �c� Photograph showing the Makhnovist drum experiment.
�d� Autocorrelation function of the signal shown in �b�. The reso-
nant frequency is around 73 Hz for the conditions of the experi-
ment.

BONNEAU, ANDREOTTI, AND CLÉMENT PHYSICAL REVIEW E 75, 016602 �2007�

016602-8



have observed that the first dry layer is at a depth H ranging
from a few centimeters to one meter. Figure 7�b� shows the
response to a tap given with the hand on the surface of the
dune �the so-called Makhnovist drum experiment shown on
Fig. 7�c��. As for the song of dunes itself, measurements of
the pressure signal in the air and of the surface acceleration
signal are very similar. While the impact is very short, the
response is quite long, with well defined oscillations that
decrease exponentially. The systematic study of this reso-
nance remains to be done in a systematic way. Still, after
preliminary studies in the lab, we think that it is related to a
finite depth effect. The resonant frequency was derived from
the first maximum of the signal autocorrelation function �Fig.
7�d��. It gives f =73 Hz which is well below the spontaneous
frequency of emission ��100 Hz�. This resonant frequency
corresponds in our theory to H=47 cm, which is indeed the
typical depth at which the first wet layer may be found on
dry days. The Q factor of the resonator, defined as the angu-
lar frequency times the relaxation time, is around 33. The
solid lines in Fig. 7�a� actually correspond to the dispersion
relation, computed with a null displacement imposed at a
depth H �see Appendix C�.

It is not completely obvious that the wet zone inside the
dune plays the role of a rigid boundary. Indeed, the porous
medium constituted by the grains is not saturated in water
�which would create a strong impedance mismatch�: The

sand becomes cohesive due to the formation of capillary
bridges between the grains. As a consequence, the normal
force exerted on grains and thus the sound velocity increases.
Since the capillary pressure is proportional to the surface
tension � divided by the grain diameter d, it is only a few
times the pressure induced by gravity at 10 cm below the
surface. Due to the small exponent of the sound speed–
pressure relation, the sound velocity should not vary much at
the interface between dry and wet sand �typically 10% at
50 cm below the surface�. However, the second effect of
capillary bridges is to increase the dissipation of energy by
viscous damping inside water. The most dissipative zone is
probably inside the grains contact area. Using common esti-
mates of the microcontacts geometry, we find a relaxation
time in the presence of water of the order of �1 ms, which is
consistent with the measurements performed at high fre-
quency by �37�. This is two orders of magnitude smaller than
the relaxation time measured for a dry sand layer �Fig. 9�. As
a conclusion, the wet layer probably acts as an efficient
acoustic absorber. Although not completely equivalent, it
should act as a rigid boundary, cutting the low frequency
modes that would otherwise be propagating in a dry sand.

C. The booming instability threshold

The previous study suggests an alternative explanation for
the booming instability threshold reported in �21�, i.e., dunes

FIG. 8. �a� Shape of the resonant—not propagative—modes. �b�
Rescaled resonant frequencies � of vertical ��� and horizontal ���
modes, together with the analytical approximation given in
Appendix B.

FIG. 9. Parameter range for sound emission in the Douady et al.
laboratory experiment �Fig. 3 of �21��, depending on the pushing
velocity V and the height of pushed sand H. The symbols ��� are
the experimental data. The dashed zone is the region of parameters
for which there is spontaneous emission of sound and the dotted
zone is that for which sand is ejected. The line shows the predicted
limit on the left of which surface waves cannot propagate due to
waveguide cutoff �see text for details�. As there are important
sources of error �for instance on ��, we have represented the error
bars by a gray zone. However, the solid line prediction was ob-
tained without any adjustable parameter. � is determined on the
same sand coming from the Atlantic Sahara �Fig. 7�. �b� The emis-
sion frequency f is taken from a subset of data in Douady et al.
close to the instability threshold and plotted as a function of V /H.
The relation is well fitted by f =0.38�g /d+6.4V /H.
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cannot boom if the first dry layer is too close to the surface,
as surface elastic waves cannot propagate. For an emission at
f =100 Hz, the predicted minimum depth H is around
7.5 cm—by comparison, typical booming avalanches are
2 cm to 5 cm thick �Fig. 1�. Even under some circum-
stances, we have observed that too thin flowing layers do not
boom, as reported in �21�. The booming instability threshold
was measured by �21� in a controlled experiment �see Intro-
duction�, where the height H and the velocity V of a small
scale avalanche were controlled. Note, however, that H cor-
responds to a typical vertical scale but the geometry of the
whole avalanching apparatus is more complicated. The ex-
periment shows that the emission frequency f and the thresh-
old depend on V and H in a complex manner �Fig. 9�. We
have plotted on the same graph the curve on the left of which
surface elastic waves cannot propagate due to the finite depth
cutoff. The elastic wave parameters were taken from the pre-
viously discussed measurement on naturally booming dunes
�with the same sand�. The emission frequency f close to the
threshold is fitted from the experimental points of Douady et
al. �21� by a linear relation on V /H �Fig. 9�b��. The effective
depth of the resonator was taken equal to the avalanche
height H. We see that the predicted threshold goes close
enough to the experimental points, without any adjustable
parameter. Of course, it would be nice to refine the calcula-
tion, taking into account the complexity of the experimental
setup geometry, but this is out of the scope of the present
paper. We clearly see here that booming is heard whenever
surface elastic waves are able to propagate, given the overall
sand depth. As a conclusion, the correct assessment of sur-
face waves dispersion shows that there is no need to intro-
duce “coupling �shear?� waves” propagating at the very
small velocity of 1 m/s in order to explain the booming
threshold. This is in agreement with what was previously
reported in this context by �19�.

D. The song of dunes as a coupling between avalanching
grains and surface elastic waves

To conclude this section, the theoretical investigation of
elastic waves at the surface of a granular bed sheds light on
the mechanisms at work in the song of dunes. These waves
have been evidenced in the field �19� and their existence is
now proven in the context of nonlinear elasticity. The com-
parison of the theory with the measured dispersion relation
has allowed us to deduce the material parameter �, which is
�only� a factor of 2 below the mean field prediction. Using
this value, the threshold above which surface waves at the
emission frequency �governed by the shear rate� can propa-
gate is determined and matches quantitatively the threshold
measured by �21�.

These results allow us to clarify the role of resonance for
the booming dune instability. For a given resonator height,
the experiment allows us to increase the collision frequency
in the shear zone �by increasing the velocity� up to the cutoff
frequency �resonance condition�. But the instability is still
present for a collision rate �i.e., an emission frequency�
larger than the cutoff frequency. In this case, the excited
elastic modes are propagative and the sand booming fre-

quency, selected by the shear rate, is no longer a resonant
condition.

Still, several problems raised by the song of dunes remain
open. �i� The exact location in avalanches of the shear band
exciting waves is still unclear. Can one produce a controlled
sounding avalanche in which the velocity profile and the
emission frequency can be simultaneously measured? �ii�
Can one prove the direct relation between the resonant fre-
quency �obtained for instance by tapping� and the emission
threshold? �iii� It has been shown that singing grains are
covered by a specific silica-gel layer �18�, which may dry the
contact between grains and thus decrease the wave damping.
We have shown here that the Q factor of a resonator consti-
tuted by sounding grains can be of the order of 33, which is
impressively high. Can one prove, by studying the propaga-
tion of surface waves in the lab, that there is a difference
�propagation speed or attenuation rate� between silent and
sounding grains?

VI. CONCLUSION

In conclusion, we have performed a derivation of sound-
wave propagation modes in the context of the Jiang-Liu
model of granular nonlinear elasticity. Under gravity, we
prove the existence of a discrete number of modes localized
in the vicinity of the free surface. They are due to a stratifi-
cation of the material stiffness, responsible for a channeling
effect of the acoustic waves. The waves can be either ellip-
tically polarized in the sagittal plane or linearly polarized in
the transverse direction. It is interesting to note that the po-
larization becomes linear if the shear modulus vanishes �A
=0� �33�. The identified modes are dispersive, which means
that there is not one single propagation speed c characteristic
of the material: There is a multiplicity of modes very close to
each other; each mode follows a dispersion relation of the
type ���k5/6.

Note additionally that all the results presented here are
very robust to slight changes in the model. For instance, we
have shown that imposing the boundary condition at finite
depth only leads to a waveguide effect, with a cutoff fre-
quency given by the resonant modes �see the Appendixes�.
We have also checked explicitly that a load at the free sur-
face �a nonvanishing pressure� does not change the number
nor the nature of the modes. In particular, no supplementary
mode corresponding to the usual Rayleigh wave appears:
The sagittal modes replace Rayleigh ones. For this reason,
we propose to call “Rayleigh-Hertz modes” the modes iden-
tified in this paper. We also checked that the same modes are
also present in the Boussinesq approximation �35�.

We have mostly discussed the theoretical findings in the
context of booming avalanches, which initially motivated the
present work. The semiquantitative agreement about the dis-
persion relation and the instability threshold are encouraging,
and confirms the mechanism of interaction between surface
waves and avalanching grains proposed a few years ago �19�.
The next step is to prove experimentally the existence of
surface waves and resonant modes and to investigate where
they can be described by nonlinear elasticity. This is an on-
going work in our laboratory and we leave these questions
for a future paper.
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APPENDIX A: SOUND PROPAGATION UNDER
ISOTROPIC COMPRESSION

1. Propagation speed of longitudinal waves under isotropic
compression

For the sake of completeness, we derive here the expres-
sions of the propagation speed under isotropic compression.
This can be useful to determine the parameters of the model
from preliminary experiments under load. We consider first
the propagation of longitudinal waves along the x axis. As
the system is homogeneous, the modes are simply Fourier

modes of the form Uei�kx−�t�. We denote by uij
˜ the distur-

bance to the strain field and uij
0̃ its traceless counterpart:

uij
˜ = ikU�1 0 0

0 0 0

0 0 0
�, uij

˜0 = ikU�
2

3
0 0

0 −
1

3
0

0 0 −
1

3

� .

The disturbance of the volumic compression is then �̃
=−ikU and that of the modulus us

2 is null. The stress associ-
ated with the sound wave is

�ij
˜ = E��0�3

2
B�̃�ij − 2Auij

˜0� ,

so that the equation of motion finally reads

− ��2U = − k2E��0�3

2
B +

4

3
A�U . �A1�

The speed of longitudinal acoustic waves is finally

c = ���P

E
�1/6�E

�
, �A2�

with �� = ��3/2�B+ �4/3�A�1/2B−1/6. We thus recover the scal-
ing of the speed of sound c as P1/6, but with an extra depen-
dence on the coefficients A and B which themselves depend
on the mean number of contacts and thus on pressure.

2. Propagation speed of transverse waves under isotropic
compression

Similarly, we consider the propagation of transverse
waves along the x axis. The modes are still Fourier modes of
the form Vei�kx−�t�,

uij
˜ = ikV� 0 1/2 0

1/2 0 0

0 0 0
� .

The disturbance of the volumic compression �̃ and of the
modulus us

2 are both null. The disturbance to the stress re-
duces to

�ij
˜ = − 2E��0Auij

˜0

and the equation of motion finally reads

− ��2V = − k2E��0AV . �A3�

The speed of longitudinal acoustic waves is finally

c = ���P

E
�1/6�E

�
, �A4�

with ��=A1/2B−1/6.
We thus get a prediction for the relation between the

propagation speeds of longitudinal and transverse waves:
�� /��= �3B /2A+4/3�1/2= �3/2�2−7/6�1/2.

APPENDIX B: RESONANCES IN A FINITE DEPTH BOX

1. Horizontally polarized resonant modes

We consider the case of a granular packing bounded at
z=H by a rough bottom wall where the displacement van-
ishes. The semi-infinite case discussed at length in the body
of the article corresponds to the limit where H tends to in-
finity. As H is the only relevant length scale of the problem,
we now use the rescaled coordinate �=z /H. We consider
nonpropagative modes of vibration whose disturbed dis-
placement field is horizontal and of the form U���ei�t. The
disturbed strain field reads

uij
˜ = � 0 0 U����/2H

0 0 0

U����/2H 0 0
� .

The trace of uij
˜ is null so that �̃=0, uij

0̃=uij
˜, and us

2̃

=2uijuij
˜ vanishes. We end with �̃ij =−2AE��0uij

˜. The dis-
turbed vertical stress deduces as

�zx
˜ = − AE��0U�/H

and leads to the equation of motion

��1/3U������ + �2U��� = 0, �B1�

where � is the rescaled pulsation defined by

� = ��H−5/6. �B2�

Remarkably, the resonant frequencies are found to scale as
H−5/6 and not H−1 as for a nondispersive medium. A normal-
ization condition can be added, for instance U�0�=1.

The solution of the ordinary equation �B1� involves the
Bessel function of the first kind J−2/5 and is of the form
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U��� = �3/5�2/5��3/5��1/3J−2/5�6�

5
�5/6� . �B3�

For large �, U goes like �−5/12 cos(�6� /5��5/6−� /20). The
value of � is selected by the zero displacement condition at
the bottom edge of the box, U�1�=0, which simplifies into
J−2/5�6� /5�=0. There is thus a discrete number of modes,
labeled by n, whose rescaled frequency can be approximated
by

� �
5�

6
�n +

11

20
� . �B4�

The numerical evaluation of the rescaled resonant frequency
� is plotted on Fig. 11 together with the analytical approxi-
mation. The agreement is almost perfect.

2. Vertically polarized resonant modes

We now consider modes of vibration whose disturbed dis-
placement field is vertical and of the form W���ei�t. Then the
disturbed strain field reads

uij
˜ = �0 0 0

0 0 0

0 0 W����/H
�, uij

˜0 =�
−

W�

3H
0 0

0 −
W�

3H
0

0 0
2W�

3H

�
from which we deduce the disturbed volumic compression

�̃=−W� /H and the disturbed modulus

us̃
2 = 2uij

0 uij
0̃ = −

4�0W�

3H
.

Then the disturbed vertical stress is deduced as

�zz
˜ = −

E��0

2H
�5A + 3B�W�.

It leads to an equation of motion similar to the previous one,

�5

2
+

3B
2A���1/3W������ + �2W��� = 0, �B5�

and thus with the same type of solution. The rescaled reso-
nant frequency � can now be approximated by

� =
5�

6
�5

2
+

3B
2A�1/2�n +

11

20
� . �B6�

The numerical evaluation of the rescaled resonant frequency
� is plotted on Fig. 11 for B /A=6 together with the analyti-

cal approximation. Again, the agreement is very good.
We find that the frequency of vertically polarized resonant

modes is significantly larger than horizontally polarized
ones. This is due to a larger stiffness in compression than in
shear.

APPENDIX C: FINITE DEPTH EFFECT ON THE
DISPERSION RELATION

We consider here the dispersion relation of surface waves
for a finite depth sample. As in the previous section, we
assume that the displacement vanishes at z=H. There are two
interesting limits. In the limit of large kH, we should recover
the semi-infinite case ��=��k−5/6� discussed in the body of
the article. In the small kH limit, there is a waveguide cutoff.
Importantly, here, the effect is not the gravity induced wave-
guide but a second one, due to the bottom boundary condi-
tion. We recall that the modes at vanishing k are nothing but
the resonant modes derived previously. Thus, in the limit
kH→0, the dispersion relation tends to �=��H−5/6.

The full dispersion relations of transverse and sagittal
modes are plotted on Fig. 10. They exhibit as expected a
�kH�5/6 asymptote and a cutoff frequency at kH=0. In the
case of transverse waves, the cutoff resonant modes are po-
larized transversally �horizontal resonant modes�. The cutoff
frequencies are thus given by Eq. �B4�. This in contrast with
the sagittal modes, which present a wiggling dispersion rela-
tion at the approach of the cutoff frequency. As shown on
Fig. 11, where the cutoff frequency is plotted as a function of
the mode number, this is due to an irregular alternation of
vertically polarized and horizontally polarized resonant
modes. This is a strong feature of the present model.

FIG. 11. Rescaled cutoff frequency � �i.e., rescaled frequency in
the limit of small kH� as a function of the mode number for sagittal
��� and transverse ��� modes. The resonant frequencies of vertical
��� and horizontal ��� modes are also shown.
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